

SFRA45

Communications Manual

IMPORTANT SAFETY INSTRUCTIONS

This equipment is designed to comply with BSEN 61010-1 (Safety requirements for electrical equipment for measurement, control, and laboratory use) – observe the following precautions:

- Ensure that the supply voltage agrees with the rating of the instrument printed on the back panel **before** connecting the mains cord to the supply.
- This appliance *must* be earthed. Ensure that the instrument is powered from a properly grounded supply.
- The inputs must not be connected to signals greater than is indicated on the front panel.
- Keep the ventilation holes on the underneath and sides free from obstruction.
- Do not operate or store under conditions where condensation may occur or where conducting debris may enter the case.
- There are no user serviceable parts inside the instrument – do not attempt to open the instrument, refer service to the manufacturer or his appointed agent.

Note: Newtons4th Ltd. shall not be liable for any consequential damages, losses, costs or expenses arising from the use or misuse of this product however caused.

ABOUT THIS MANUAL

This manual gives details of the communication commands recognized by the SFRA45 series of instruments over RS232, USB, or LAN. For more general operating instructions for the instrument refer to the user manual.

Each command is listed alphabetically with details of any arguments and reply. A one line summary of each command is given in the appendix. Although most of the commands apply to all instruments in the range there are some commands that are specific to one instrument or another.

The information in this manual is believed to be accurate and complete but Newtons4th Ltd cannot accept any liability whatsoever for any consequential damage or losses arising from any errors, inaccuracies, or omissions.

Revision 2.65

This manual is copyright © 2008 - 2010 Newtons4th Ltd. and all rights are reserved. No part may be copied or reproduced in any form without prior written consent.

16th January 2012

CONTENTS

1	Usin	ig remote control	1-1
	1.1	Standard event status register	. 1-3
	1.2	Serial Poll status byte	
	1.3	RS232 connections	
2	Com	nmunication commands	1
	*CLS		1
		S	
		;?	
		у И	
		Γ	
		I	
		G	
		<u> </u>	
		E	
		P	
		H	
		Α	
		A	
		R	
		.N.	
		Т	
		IV	40

RANGE	42
RESOLU	43
RESULT	44
REZERO	45
SCALE	46
SCREEN?	47
SPEED	48
START	49
STATUS?	50
STOP	51
TCOMM?	52
TCOMM	53
TCON?	54
TCON	55
TFA	56
TFLUID	58
TID?	59
TID	60
TMANU?	61
TMANU	62
TOLTC	63
TREF?	64
TREF	65
TRES?	66
TRES	67
TSER?	68
TSER	69
TTEMP	70
TUNSHL	71
USER?	72
VERSIO?	73
WAVEFO	74
7FRO	. 75

1 <u>Using remote control</u>

The instrument is fitted with an RS232 serial communications port and USB port as standard, and may have a LAN interface fitted as an option. All the interfaces use the same ASCII protocol with the following end of line terminators:

	Rx expects	Tx sends	
RS232	carriage return	carriage return	
USB	(line feed ignored)	and line feed	
LAN			

All the functions of the instrument can be programmed via any interface, and results read back. The port to be used is selected by the REMOTE menu.

The commands are not case sensitive and white space characters are ignored (e.g. tabs and spaces). Replies from the instrument are always upper case, delimited by commas, without spaces.

Only the first six characters of any command are important – any further characters will be ignored. For example, the command to set the generator frequency is FREQUE but the full word FREQUENCY may be sent as the redundant NCY at the end will be ignored.

Fields within a command are delimited by comma, multiple commands can be sent on one line delimited with a semicolon. Eg.

Mandatory commands specified in the IEEE488.2 protocol have been implemented, (e.g. *IDN?, *RST) and all commands that expect a reply are terminated with a question mark.

The instrument maintains an error status byte consistent with the requirements of the IEEE488.2 protocol (called the standard event status register) that can be read by the mandatory command *ESR? (see section 5.1).

The instrument also maintains a status byte consistent with the requirements of the IEEE488.2 protocol, that can be read by the mandatory command *STB? (see section 5.2).

The keyboard is disabled when the instrument is set to "remote". Press HOME to return to "local" operation.

RS232 data format is: start bit, 8 data bits (no parity), 1 stop bit. Flow control is RTS/CTS (see section 5.2), baud rate is selectable via the REMOTE menu.

A summary of the available commands is given in the Appendix. Details of each command are given in the communication command section of the manual.

Commands are executed in sequence except for two special characters that are immediately obeyed:

Control T (20) – reset interface (device clear)

Control U (21) - warm restart

1.1 Standard event status register

PON	CME	EXE	DDE	QYE	OPC

bit 0 OPC (operation complete) cleared by most commands set when data available or sweep complete (unterminated query error) bit 2 QYE set if no message ready when data read (device dependent error) bit 3 DDE set when the instrument has an error bit 4 EXE (execution error) set when the command cannot be executed (command interpretation error) bit 5 CME set when a command has not been recognised (power on event) bit 7 PON set when power first applied or unit has reset

The bits in the standard event status register except for OPC are set by the relevant event and cleared by specific command (*ESR?, *CLS, *RST). OPC is also cleared by most commands that change any part of the configuration of the instrument (such as MODE or START).

1.2 Serial Poll status byte

bit 0 RDV (result data available)

set when results are available to be read as enabled by DAVER

bit 1 SDV (sweep data available)

set when sweep results are available to be read as enabled by DAVER

bit 2 not used

bit 3 not used)

bit 4 MAV (message available)

set when a message reply is waiting to be read

bit 5 ESB (standard event summary bit)

set if any bit in the standard event status register is set as well as the corresponding bit in the standard event status enable register (set by *ESE).

1.3 RS232 connections

The RS232 port on the instrument uses the same pinout as a standard 9 pin serial port on a PC or laptop (9-pin male 'D' type).

Pin	Function	Direction
1	DCD	in (+ weak pull up)
2	RX data	in
3	TX data	out
4	DTR	out
5	GND	
6	DSR	not used
7	RTS	out
8	CTS	in
9	RI	not used

The instrument will only transmit when CTS (pin 8) is asserted, and can only receive if DCD (pin 1) is asserted. The instrument constantly asserts (+12V) DTR (pin 4) so this pin can be connected to any unwanted modem control inputs to force operation without handshaking. The instrument has a weak pull up on pin 1 as many null modem cables leave it open circuit. In electrically noisy environments, this pin should be driven or connected to pin 4.

To connect the instrument to a PC, use a 9 pin female to 9 pin female null modem cable:

1 & 6	-	4
2	-	3
3	-	2
4	-	1 & 6
5	-	5
7	-	8
8	-	7

2 <u>Communication commands</u>

*CLS *CLS

Function: Clear status

Description: Clears the standard event status register.

Format: *CLS

Arguments: none

Reply: none

Example: *CLS

*ESR?

0

*ESE *ESE

Function: Set standard event status enable register.

Description: Enable which bits of the standard event

status register set the ESB bit in the serial

poll status byte..

Format: *ESE, value

Arguments: decimal equivalent of bits in standard

event status enable register

Reply: can be read by *ESE?

Example: *ESE, 60

Notes: The following bits in the standard event

status enable register have been

implemented:

bit 0 OPC (operation complete)

bit 2 QYE (unterminated query error) bit 3 DDE (device dependent error)

bit 4 EXE (execution error)

bit 5 CME (command interpretation error)

bit 7 PON (power on event)

For example, *ESE, 60 enables all the error bits so that the ESB bit in the serial poll status byte is set in the event of any

error.

*ESR? *ESR?

Function: Standard event status register query

Description: Returns the contents of the standard

event status register and clears it.

Format: *ESR?

Arguments: none

Reply: decimal equivalent of bits in standard

event status register

Example: *ESR?

33

Notes: The following bits in the standard event

status register have been implemented:

bit 0 OPC (operation complete)

bit 2 QYE (unterminated query error)

bit 3 DDE (device dependent error)

bit 4 EXE (execution error)

bit 5 CME (command interpretation error)

bit 7 PON (power on event)

For example, if a command is sent incorrectly and is not recognised, the CME bit will be set and the value of 33 will be

returned.

*IDN? *IDN?

Function: Identify query

Description: Returns a standard format identification

string.

Format: *IDN?

Arguments: none

Reply: An ASCII string in the IEEE488.2 format:

manufacturer, model, serial no, version

Example: *IDN?

NEWTONS4TH, PSIMETRIQ, 01234, 1.00

*OPC? *OPC?

Function: Test for operation complete

Description: Returns 1 if previous operation is

completed, 0 if not.

Format: *OPC?

Arguments: none

Reply: 0 or 1

Example: START

*OPC?

0

*OPC?

0

*OPC?

1

Notes: *OPC? can be used to indicate when data

is available or when a frequency sweep

has completed.

*RST *RST

Function: Reset

Description: Resets the instrument to the default state

and clears the standard event status

register.

Format: *RST

Arguments: none

Reply: none

Example: *RST

Notes: The *RST command loads the default

configuration. This is the same as loading the default configuration via the

PROGRAM menu.

Any preceding setup commands will be

overwritten.

*RST should be followed by an end of line not a message separator. It may be helpful to follow it with a short pause to allow the new configuration to become active before sending further commands.

*SRE *SRE

Function: Set service request enable register.

Description: Enable which bits of the status byte

register initiate a service request.

Format: *SRE, value

Arguments: decimal equivalent of bits in status byte

register

Reply: can be read by *SRE?

Example: *SRE, 1

generate a service request when data

available.

*SRE? *SRE?

Function: Read service request enable register.

Description: Read back the present setting of the

service request enable register.

Format: *SRE?

Arguments:

Reply: decimal equivalent of bits in status byte

register that would generate a service

request.

Example: *SRE?

1

*STB? *STB?

Function: Read serial poll status byte

Description: Returns the decimal value of the serial

poll status byte.

Format: *STB?

Arguments: none

Reply: decimal value of the serial poll status byte

Example: *STB?

1

Notes: The following bits in the serial poll status

register have been implemented:

bit 0 RDV (results data available) bit 1 SDV (sweep data available)

bit 3 ALA (alarm active)

bit 4 MAV (message available)

bit 5 ESB (standard event summary bit)

*TRG *TRG

Function: Trigger

Description: Initiates a new measurement, resets the

ranging and filtering.

Format: *TRG

Arguments: none

Reply: none

Example: MODE, VRMS

*TRG VRMS?

*TST? *TST?

Function: Self test query

Description: Returns the results of self test

Format: *TST?

Arguments: none

Reply: single integer

bit 0 - set if uncalibrated

bit 1 – set if error with analogue zero

> 15 - major system error

Example: *TST?

0

*WAI *WAI

Function: Wait for operation complete

Description: Suspends communication until the

previous operation has completed

Format: *WAI

Arguments: none

Reply: none

Example: GAINPH

START *WAI

GAINPH, SWEEP?

Notes: In the example, the query command

GAINPH, SWEEP? can be sent immediately after the *WAI command and the sweep data will be returned as soon as the

sweep has completed.

ABORT ABORT

Function: Abort sweep

Description: Abort an active sweep.

Format: ABORT

Arguments: none

Reply: none

Example: FSWEEP,1000,1E5,5E5

START ABORT

ACRMS ACRMS

Function: Set up rms voltmeter.

Description: Set mode to rms voltmeter.

Format: ACRMS

Arguments: none

Reply: none

Examples: ACRMS

Notes: This has the same effect as MODE, ACRMS

ACRMS? VRMS?

Function: Read true rms voltmeter results

Description: Reads back latest voltmeter results.

Waits for next unread data if necessary. Clears new data available status bit.

Format: ACRMS?

Arguments:

Reply: 10 data values separated by commas

Ch1 Vrms, Ch2 Vrms, Ch1 Vdbm, Ch2 Vdbm, Ch1 Pk, Ch2 Pk, Ch1 CF,

Ch2 CF, Ch1 Surge ,Ch2 Surge

Example: ACRMS?

ACTRIM ACTRIM

Function: Set ac control parameters

Description: Sets the specified signal level, tolerance

and input channel. for the ac control

(amplitude compression).

Format: ACTRIM, channel, level, tolerance

Arguments: channel:

DISABL CH1 CH2

level:

required ac level in V or A or dBm

tolerance:

required accuracy in percent

Reply: none

Example: ACTRIM, CH1, 1.0, 5 (1.0V, 5%)

Notes: The level should be set in dBm if dBm

mode is selected

It is not necessary to send all the arguments but those that are sent must

be in the correct sequence.

AMPLIT AMPLIT

Function: Set output amplitude

Description: Sets the output amplitude in Volts or dBm

for the generator.

Format: AMPLIT, amplitude

Arguments: peak amplitude in Volts

or amplitude in dBm

Reply: none

Example: AMPLIT, 0.5 (set peak amplitude to 0.5V)

Notes: The amplitude may be Volts or dBm.

BEEP BEEP

Function: Sound the buzzer

Description: Makes a "beep" from the instrument.

Format: BEEP

Arguments: none

Reply: none

Example: BEEP

BLANKI BLANKI

Function: Select blanking

Description: Enable or disable low value blanking.

Format: BLANKI, value, threshold

Arguments: value:

ON

OFF

threshold:

threshold in appropriate units

Reply: none

Example: BLANKI,OFF

BLANKI, ON, -35

CONFIG

Function: Direct access of configuration parameters

Description: Sets configuration parameter for which

there may not be a direct command.

Format: CONFIG, index, data

Arguments: index is the number of the parameter

data is the data for that parameter

Reply: none

Example: CONFIG,6,1 (set phase convention)

Notes: The list of configurable parameters is

given in the appendix.

CONFIG goes through the same limit checking as when entering data from the

menus.

CONFIG? CONFIG?

Function: Configurable parameter query

Description: Reads the present value of a single

parameter.

Format: CONFIG, index? or: CONFIG? index

Arguments: index is the parameter number

Reply: Value of parameter, real or integer as

appropriate.

Example: CONFIG,6? (read phase convention)

0

CONFIG,6,1 CONFIG,6?

1

Notes: The list of configurable parameters is

given in the appendix.

DAV?

Function: Data available query

Description: Returns data availability status.

Format: DAV?

Arguments: none

Reply: Decimal equivalent of data available bits:

bit0 new data available

bit1 data available

bit2 new full sweep data available

bit3 sweep data available

bit4 streaming data available

bit5 more streaming data to come

bit6 integration data available bit7 datalog data available

Example: START (trigger sweep)

DAV?

0

DAV?

11 (first data available)

DAV?

11 DAV? 11

DAV?

15 (full sweep data available)

Notes: DAV? does not modify the status bits.

DAVER DAVER

Function: Set data available enable register

Description: Sets bits in the data available enable

register to control which status bits set the data available bits in the status byte.

Format: DAVER, value

Arguments: decimal equivalent of data available bits

bit0 set bit 0 of status byte when

new data available

bit1 set bit 0 of status byte when

data available

bit2 set bit 1 of status byte when

new full sweep data available

bit3 set bit 1 of status byte when

sweep data available

bit4 set bit 2 of status byte when

streaming data available

bit5 set bit 2 of status byte if more

streaming data is to come

Reply: none

Example: DAVER, 4

set bit 1 in status byte only when full

sweep data is ready

Notes: default value is 6:

bit 0 of status byte is set whenever data

is available

bit 1 of status byte is set when full sweep

data is available.

DAVER? DAVER?

Function: Read data available enable register

Description: Read back present setting of the data

available enable register, which controls the status bits that set the data available

bits in the status byte.

Format: DAVER?

Arguments: none

Reply: decimal equivalent of bits

Example: DAVER?

4

FILTER FILTER

Function: Select the filtering

Description: Sets the filter time constant and dynamic

response.

Format: FILTER, type, dynamics

Arguments: type:

NONE NORMAL SLOW

dynamics: AUTO FIXED

Reply: none

Example: FILTER, NORMAL, FIXED

FILTER, NONE

Notes: It is not necessary to send both

parameters if it is only required to set the type. Both arguments must be sent to set

the dynamics.

FRA

Function: Set frequency response analyser mode.

Description: Set frequency response analyser mode.

Format: FRA

Arguments:

Reply: none

Example: FRA

Notes: This command has the same effect as

MODE, GAINPH.

FRA, GAINPH, TFA are aliases for the

same command.

FRA? FRA?

Function: frequency response analyser query

Description: Read frequency response analyser results.

Sets frequency response analyser mode if

not already set.

Waits for next unread data if necessary. Clears new data available bit read by

DAV?

Format: FRA?

FRA?SWEEP or: or: FRA, SWEEP?

none, or SWEEP Arguments:

Reply: 6 data values separated by commas

freq, mag1, mag2, db, phase, gain

one line per result for sweep data

Example: OUTPUT, ON

FRA

FSWEEP, 20, 10, 20E3

START DAV?

3

DAV? 15

FRA?SWEEP data returned

FRA? waits for next unread data. Notes:

FRA?SWEEP does not wait for new data -

data can be read multiple times.

FRA, GAINPH, TFA are aliases for the

same command

FREQUE FREQUE

Function: Set the output frequency

Description: Sets the generator output frequency in

Hz.

Format: FREQUE, frequency

Arguments: frequency in Hz

Reply: none

Example: FREQUE,5e4 (set frequency to 50kHz)

FSWEEP FSWEEP

Function: Set the frequency sweep parameters

Description: Sets the start frequency in Hz, the end

frequency, the number of steps and

log/linear for the selected function.

Format: FSWEEP, steps, start, end, type

Arguments: steps:

number of steps

start:

start frequency in Hz

end:

end frequency in Hz

type:

LOGARI LINEAR

Reply: none

Example: MODE, GAINPH

FSWEEP,50,1000,1e6

(set 50 steps between 1kHz and 1MHz)

Notes: It is not necessary to send all the

arguments, but if they must be in the

specified order.

The same command is used for all the functions — the data is applied to whichever function has been selected if valid (such as gain/phase analyser). If the selected mode is not valid (such as rms), then the command is ignored and an execution error is flagged in the standard

event status register, sesr.

GAINPH GAINPH

Function: Set gain/phase analyser mode.

Description: Set gain/phase analyser mode.

Format: GAINPH

Arguments:

Reply: none

Example: GAINPH

Notes: This command has the same effect as

MODE, GAINPH.

FRA, GAINPH, TFA are aliases for the

same command.

GAINPH? GAINPH?

Function: Gain/phase query

Description: Read gain/phase analyser results.

Sets gain/phase analyser mode if not

already set.

Waits for next unread data if necessary. Clears new data available bit read by

DAV?

Format: GAINPH?

or: GAINPH?SWEEP or: GAINPH,SWEEP?

Arguments: none, or SWEEP

Reply: 6 data values separated by commas

freq, mag1,mag2,db,phase,gain one line per result for sweep data

Example: OUTPUT, ON

GAINPH

FSWEEP, 20, 10, 20E3

START DAV?

3

DAV? 15

GAINPH?SWEEP data returned

Notes: GAINPH? waits for next unread data.

GAINPH?SWEEP does not wait for new data – data can be read multiple times.

HOLD HOLD

Function: Set/clear HOLD mode

Description: HOLD mode stops the instrument from

updating the measured values

Format: HOLD, value

Arguments: value:

ON

OFF

Reply: none

Example: HOLD,ON

INPUT INPUT

Function: Set input mode

Description: Selects the input type of the instrument

Format: INPUT, type, impedance

Arguments: type:

LOLEVEL

impedance: 500HMS

HIIMPEDANCE

Reply: none

Example: INPUT,LOLEVE,HIIMPE

Notes: The impedance value is only valid for the

low level input

KEYBOA KEYBOA

Function: Disable front panel keyboard.

Description: The front panel keyboard can be disabled

to prevent accidental operation.

Format: KEYBOARD, value

Arguments: value:

ENABLE DISABLE

Reply: none

Example: KEYBOARD, DISABLE

Notes: The keyboard can be re-enabled from the

front panel only by pressing the HOME

key.

LCR

Function: Set LCR meter mode.

Description: Set LCR mode and model.

Format: LCR, model

Arguments: model:

IMPEDANCE

SERIES PARALLEL

Reply: none

Example: LCR, IMPEDA

LCR? LCR?

Function: LCR meter query

Description: Read LCR meter results.

Sets LCR meter mode if not already set. Waits for next unread data if necessary. Clears new data available bit read by

DAV?

Format: LCR?

or: LCR?SWEEP cor: LCR,SWEEP?

Arguments: none, or SWEEP

Reply: 5 data values separated by commas:

frequency, resistance, reactance,

impedance, phase

one line per result for sweep data

Example: OUTPUT, LOLEVE

LCR?

data returned

Notes: LCR? waits for next unread data.

LCR?SWEEP does not wait for new data -

data can be read multiple times.

MARKER MARKER

Function: Set frequency marker

Description: Enable or disable frequency marker.

Format: MARKER, value, frequency

Arguments: value:

Off

Single Dual

frequency:

marker frequency in Hz

Reply: none

Example: MARKER,OFF

MARKER, Single, 25e3

Notes: It is not necessary to send the frequency

when enabling the marker if it has already

been set.

MODE MODE

Function: Set mode

Description: Sets the fundamental operating mode of

the instrument.

Format: MODE, type

Arguments: type:

ACRMS LCR FRA SCOPE

Reply: none

Example: MODE,LCR

Notes: MODE sets the measurement mode of the

instrument

OUTPUT

Function: Set output

Description: Turns the output on or off, or sets the

level mode to dBm or voltage. Also

specifies action at the end of a sweep

Format: OUTPUT, type

Arguments: command:

OFF ON

Reply: none

Example: OUTPUT, ON

Notes: For safety, the output defaults to off and

must be turned on explicitly.

PHCONV PHCONV

Function: Set phase convention

Description: Set phase convention

Format: PHCONV, convention

Arguments: convention:

180: -180 to +180

-360: 0 to -360 +360: 0 to +360

Reply: none

Example: PHCONV, -360

Notes:

Notes: Number 0 represents factory default,

which can only be recalled.

PROGRA? PROGRA?

Function: Identify current program.

Description: Reads the name of the last program to be

loaded or recalled.

Format: PROGRA?

Arguments: none

Reply: text string

Example: PROGRA?

factory default

RANGE RANGE

Function: Set channel ranging.

Description: Select minimum range and range control

for a given input channel.

Format: RANGE, channel, ranging, range

Arguments: channel:

CH1 CH2

ranging:

AUTO UPAUTO MANUAL

range:

nominal range value

Reply: none

Example: RANGE, CH2, MANUAL, 3V

RESOLU RESOLU

Function: Set the data resolution

Description: Data is returned in scientific format with

exponent and mantissa. The resolution of the mantissa may be selected to be 5

digit (NORMAL) or 6 digit (HIGH).

Format: RESOLU, format

Arguments: format:

NORMAL (5 digit mantissa)
HIGH (6 digit mantissa)
BINARY (raw binary format)

Reply: none

Example: RESOLU, HIGH

Notes: The resolution only changes the real

number replies.

Data format for NORMAL is:

[-]1.2345E[-]00

Data format for HIGH is:

[-]1.23456E[-]00

The signs of the mantissa and exponent, shown as [-] in the above examples, are

only sent if they are negative.

Data format for BINARY is a proprietary floating point format which returns raw data in a minimum number of data bytes.

RESULT RESULT

Function: Access non volatile results stores.

Description: Recall, store or delete non-volatile results

store.

Format: RESULT, function, number

Arguments: function:

RECALL STORE DELETE

number

1-999

Reply: none

Example: RESULT, RECALL, 13

REZERO REZERO

Function: Rezero front end

Description: Request the DSP to re-compensate for dc

offset and compute a new autozero

Format: REZERO

Arguments: none

Reply: none

Example: REZERO

SCALE SCALE

Function: Set channel scale factor.

Description: Set a multiplying scale factor for a given

input channel.

Format: SCALE, channel, factor

Arguments: channel:

CH1 CH2

factor:

multiplying scale factor

Reply: none

Example: SCALE, CH2, 10

SCREEN? SCREEN?

Function: Read the screen data

Description: Returns a bit map of screen pixel display

in ascii and hex format

Format: SCREEN?

Arguments: none

Reply: Multiple data bit values

Example: SCREEN?

data returned

Notes: SCREEN? response:

ASCII coded Hex

(2 characters for each byte)

240 lines of 40 bytes (each line represents one line of the display)

preceded by #H

Each byte represents 8 dots where the Isb

is the leftmost dot of the display

The bit is set for on and cleared for off

SPEED SPEED

Function: Sets the measurement speed

Description: Sets the minimum window size for the

measurement (FRA and LCR modes).

Format: SPEED, value

SPEED, WINDOW, time

Arguments: value:

FAST

MEDIUM SLOW VSLOW VFAST WINDOW

time:

window time in seconds

Reply: none

Example: SPEED, SLOW

START START

Function: Start sweep

Description: Initiate sweep in those functions that

have a sweep or resets filtering in others.

Format: START

Arguments: none

Reply: none

Example: FSWEEP,100,50000,75000

START

STATUS? STATUS?

Function: Read back channel ranging status.

Description: Read back condition of selected channel:

range number (1-16)

range text

overflow/underflow status

Format: STATUS, channel? or: STATUS? channel

Arguments: channel:

CH1 CH2

Reply: range number,range text,over/under/ok

1-16

range as per RANGE command

OVER if overflow LOW if underflow OK if in range

Example: STATUS, CH1?

6,3V,OK

STOP

Function: Stop sweep

Description: Stop an active sweep.

Format: STOP

Arguments: none

Reply: none

Example: FSWEEP,100,50000,75000

START STOP

TCOMM? TCOMM?

Function: Read the Comments relating to

tranformer

Description: Comments

Format: TCOMM?

Arguments: none

Reply: Transformer Reference terminal

terminated by CR

Example: TCOMM?

abcdefg

TCOMM TCOMM

Function: Transformer Comments

Description: Comments to state the condition of the

DUT during measurement

Format: TCOMM, Comments

Arguments: Comments

Reply: none

Example: TCOMM,abcd

Notes: Max 20 Characters

TCON? TCON?

Function: Read the Transformer Connected

Terminals

Description: Transformed Connected Terminals

Format: TCON?

Arguments: none

Reply: Transformer ID terminated by CR

Example: TCON?

A1-B1-C1

TCON TCON

Function: Set Transformer Connected Terminal

Description: Sets the transformer Connected Terminal,

the identification of all test objects terminals that were connected together

during the measurement

Format: TCON, ConnTerminal

Arguments: ConnTerminal

Reply: none

Example: TCON,a1-b1-c1

TFA

Function: Set transfer function analyser mode.

Description: Set transfer function analyser mode.

Format: TFA

Arguments:

Reply: none

Example: TFA

Notes: This command has the same effect as

MODE, GAINPH.

FRA, GAINPH, TFA are aliases for the

same command.

TFA?

Function: transfer function analyser query

Description: Read transfer function analyser results.

Sets transfer function analyser mode if

not already set.

Waits for next unread data if necessary.
Clears new data available bit read by

DAV?

Format: TFA?

or: TFA?SWEEP or: TFA,SWEEP?

Arguments: none, or SWEEP

Reply: 6 data values separated by commas

freq, mag1,mag2,db,phase,gain one line per result for sweep data

Example: OUTPUT, ON

TFA

FSWEEP, 20, 10, 20E3

START DAV?

3

DAV?

TFA?SWEEP data returned

Notes: TFA? waits for next unread data.

TFA?SWEEP does not wait for new data -

data can be read multiple times.

FRA, GAINPH, TFA are aliases for the

same command

TFLUID TFLUID

Function: Set transformer fluid filled

Description: Sets the transformer fluid filled ,Yes or

NOPE depending on whether the test object was fully filled with the normal

operating fluid during measurement

Format: TFLUID, type

Arguments: command:

YES

NOPE

Reply: none

Example: TFLUID, YES

TID?

Function: Read the Transformer ID

Description: Returns the transformer ID

Format: TID?

Arguments: none

Reply: Transformer ID terminated by CR

Example: TID?

0123456789

TID

Function: Set Transformer ID

Description: Sets the transformer ID.

Format: TID, ID

Arguments: ID

Reply: none

Example: TID,234 (set transformer ID to 234)

TMANU? TMANU?

Function: Read the Transformer Manufacturer

Description: Returns the transformer Manufacturer

Format: TMANU?

Arguments: none

Reply: Transformer Manufacturer ID terminated

by CR

Example: TMANU?

Transformer Sols

TMANU TMANU

Function: Set Transformer Manufacturer ID

Description: Sets the transformer manufacturer ID.

Format: TMANU, manID

Arguments: manID

Reply: none

Example: TMANU, ABCDEF (set transformer

manufacturer ID to ABCDEF)

TOLTC TOLTC

Function: Transformer OLTC

Description: Sets the transformer OLTC tap position,

the tap position indicated on the test

object during measurement

Format: TCOMM, OLTC

Arguments: Comments

Reply: none

Example: TOLTC,21

TREF?

Function: Read the Transformer Reference Terminal

Description: Returns the transformer Reference

Terminal, the identification of the test object terminal to which the reference and the source lead was connected

Format: TREF?

Arguments: none

Reply: Transformer Reference terminal

terminated by CR

Example: TREF?

abcdefg

TREF TREF

Function: Set Transformer Reference Terminal

Description: Sets the transformer Reference Terminal,

the identification of the test object terminal to which the reference and the

source lead was connected

Format: TREF, RefTerm

Arguments: Reftern

Reply: none

Example: TREF, abcd

TRES? TRES?

Function: Read the Transformer Response Terminal

Description: Returns the transformer Response

Terminal, the identification of the test object terminal to which the response

lead was connected

Format: TRES?

Arguments: none

Reply: Transformer Response terminal

terminated by CR

Example: TRES?

abcdefg

TRES

Function: Set Transformer Response Terminal

Description: Sets the transformer Response Terminal,

the identification of the test object terminal to which the response lead was

connected

Format: TRES, ResTerm

Arguments: Restern

Reply: none

Example: TRES, abcd

TSER? TSER?

Function: Read the Transformer Serial Number

Description: Returns the transformer Serial Number

Format: TSER?

Arguments: none

Reply: Transformer Serial Number terminated by

CR

Example: TSER?

0123456789

TSER TSER

Function: Set Transformer Serial Number

Description: Sets the transformer Serial Number.

Format: TSER, ID

Arguments: ID

Reply: none

Example: TSER,234 (set transformer serial ID to

234)

TTEMP TTEMP

Function: Set the temperature of the test object

dielectric during measurement

Description: Set the temperature of the test object

dielectric during measurement

Format: TTEMP, temperature

Arguments: Temperature in degree Celsius

Reply: none

Example: TTEMP,23.2 (set temperature to

23.2°C)

TUNSHL TUNSHL

Function: Set the length of unshielded Connection

unit of the transformer

Description: Set the length of unshielded Connection

unit of the transformer in mm

Format: TUNSHL, length

Arguments: length in mm

Reply: none

Example: TUNSHL,22 (set length to 22mm)

USER? USER?

Function: Read the user data

Description: Returns up to 3 lines of user data

Format: USER?

Arguments: none

Reply: 3 lines of ASCII terminated by CR

Example: USER?

Newtons4th Ltd R&D department

SFRA45 #4

VERSIO? VERSIO?

Function: Read the instrument code versions.

Description: Returns an ASCII string with the details of

the various parts of the instrument

firmware.

Format: VERSIO?

Arguments: none

Reply: date code, type, cpu, dsp, fpga, boot

Examples: VERSION?

PQ3504,1,2.01,2.20,2.20,2.02

Notes: This data can be displayed on the screen

by pressing SYSTEM then BACK

WAVEFO WAVEFO

Function: Set the output waveform

Description: Selects the output waveform for the

signal generator.

Format: WAVEFO, type

Arguments: type:

SINEWA (sine wave)

TRIANG (triangle wave)
SQUARE (square wave)
NOISE (white noise)

RAMP (ramp)

Reply: None

Example: FREQUE,500

WAVEFO, TRIANG (triangle wave)

OUTPUT, ON

ZERO

Function: Apply or remove the zero

Description: Applies or removes a zero function

depending on the measurement mode

(same as pressing ZERO key).

Performs lead compensation in LCR mode.

Format: ZERO

ZERO, DELETE ZERO, DB, offset ZERO, PHASE, offset

LCR ZERO, SINGLE

compensation ZERO, SWEEP, steps, start, finish

ZERO, OPEN ZERO, SHORT ZERO, STORE ZERO, RECALL

Arguments: offset:

offset value

steps:

LCR sweep compensation steps

start:

LCR compensation start frequency

stop:

LCR compensation stop frequency

Reply: none

Example: ZERO, SWEEP, 100, 1e3, 1e6

ZERO, OPEN

performs open circuit compensation

Appendices

COMMAND SUMMARY

CONFIGURABLE PARAMETERS

command format reply format *CLS *ESE.value single integer data value *ESE? *ESR? single integer data value *IDN? company, product, serial no, version *OPC? 0 or 1 *RST *SRE, value single integer data value *SRE? *STB? single integer data value *TRG *TST? single integer data value *WAI **ABORT** ACRMS? 10 data values (RMS results) **ACRMS** ACTRIM, channel, level, tol AMPLIT, amplitude **BEEP** BLANKI, on/off, threshold CONFIG, parameter, data CONFIG, parameter? single integer or real data value DAV? single integer data value DAVER. value DAVER? single integer data value FILTER, type, dynamics FRA FRA? freq,gain,phase,dB,mag1,mag2 FRA, SWEEP? n lines of FRA? data FREQUE, frequency FSWEEP, steps, start, end, log **GAINPH GAINPH?** freq,mag1,mag2,db,phase,gain n lines of GAINPH? data GAINPH, SWEEP? HOLD, on/off INPUT, type, impedance KEYBOA, value LCR, conditions, param, head LCR? freq, resistance, reactance, impedance, phase n lines of data:

LCR, SWEEP?

MARKER, on/off, frequency

MODE, type OUTPUT, on/off

PHCONV, convention

PROGRAM, function, number

PROGRAM? CR terminated text string

RANGE, ch, ranging, range

RESOLU.format

RESULT, function, number

REZERO

SCALE, channel, factor

SCALE, channel? single real data value SCREEN? Multiple data bit values

SPEED, speed

START

STATUS, channel? range number, range text, over/low/ok

TOD

STOP

TCOMM, comments

TCOMM? Comments

TCON, conterminal

TCOM? Connected Terminals

TFA

TFA? freq,gain,phase,dB,mag1,mag2

TFA,SWEEP? n lines of TFA? Data

TFLUID, yes/no

TID, identifier

TID? Identifier

TMANU, manufacturer

TMANU? Manufacturer

TOLTC, oltc TREF, refterm

TREF? Reference Terminal

TRES, resterm

TRES? Response Terminal

TSER, serial No

TSER? Serial Number

TTEMP, temperature

TTEMP? Temperature

TUNSHL, length

USER? 3 CR terminated text strings VERSION? datecode,type,cpu,dsp,fpga,boot

WAVEFO, type ZERO ZERO, DELETE

calibration commands

CALAPP

CALCOM, freq CALDCO, value

CALFIL, index, value

CALFIL? six real data values

CALFRQ, index, freq

CALFRQ? seven real data values

CALHF, index, value CALIBR, index, value

CALIBR? single integer data value

CALIDS, string

CALIDS? string

CALOUT, index, value

CALPHA, index

CALRES

CALSAV, password CALSNO, serial number

CALSTR, string

CALSTR? string

Appendix B – Configurable parameters

All parameters can be accessed using the CONFIG command:

CONFIG, parameter, data

Nicosala a a Consatiana

Number	Function	
1	System param Operating mode	
2	Interface, (Remote	e settings) 0=RS232 1=USB 2=LAN
3	Bandwidth auto	or wide, (Acquisition Settings) 0=Wide 1=Low 2=Auto
6	Phase convention	On, (System Options) 0=-180° to +180° 1=0° to -360° 2=0° to +360°
7	Output , (Generato	r settings) 0=Off 1=On
8	Step message,	(System Options) 0=Disabled 1=Enabled
9	Keyboard beep	on/off, (System Options) 0=Enabled 1=Disabled

```
12
            User Window, (FRA/LCR Measurement Settings – enter figure in sec)
13
            Speed, (FRA/LCR Measurement Settings)
                              0=Very Slow
                               1 = Slow
                              2=Medium
                              3=Fast
                              4=Very Fast
                              5=Window
14
           Filter, (FRA/LCR Measurement Settings)
                              0=Normal
                              1 = Slow
                              2=None
                              3=None + fast response
16
            Baud rate, (Remote Settings "RS232")
                              0 = 38400
                              1 = 19200
                              2=9600
                              3 = 1200
18
            Sweep Steps, (Sweep Settings Enter step number figures)
19
            Sweep start frequency, (Sweep Settings-Enter figures)
20
            Sweep stop frequency, (Sweep Settings-Enter figures)
21
            Sweep type, (Sweep Settings)
                              0=Single
                               1=Continuous
22
            Resolution, (Remote Settings)
                              0=Normal
                               1 = High
28
           CH1 input ranging, (Input Settings)
                              0=Full Autorange
                              1=Range Up Only
                              2=Manual
```

29	CH2 input rang	ing, (Input Settings FRA Only) 0=Full Autorange 1=Range Up Only 2=Manual
32	CH1 scale facto	Or, (Input Settings-Enter figures)
33	CH2 scale facto	Or, (Input Settings-Enter figures)
39	Brightness, (syst	tem Options) $0 = Low$ $1 = High$
40	Display, (System C	Options) 0=Colour 1=White on black 2=Black on white
42	Enlarge results,	, (System Options) $0 = Off$ $1 = On$
47	Display type, (s	weep Settings) 0=Real time 1=Table 2=Graph
48	Generator frequency, (Generator Settings-Enter figures)	
49	Low output am	plitude V, (Generator Settings-Low output-Enter figures)
51	Generator wave	eform, (Generator Settings) 0=Sinewave 1=Square wave 2=Triangle 3=Ramp 4=Noise

52	Frequency step, (Generator Settings-Enter figures)
53	Amplitude Step, (Generator Settings-Enter figures)
54	Low output amplitude dBm, (Generator Settings-Enter dBm figures)
55	Amplitude step, (Generator Settings-Enter dB figures)
56	Amplitude control, (Generator Settings) 0=Volts 1=dBm
60	Sweep type, (Sweep Settings +Step Type) 0=Logarithmic 1=Linear
61	Gain Graph scaling, (Sweep Settings) 0=Auto 1=Manual
62	Gain Graph max, (Sweep settings-Enter figures)
63 64	Gain Graph min, (Sweep settings-Enter figures) Frequency marker, (Sweep Settings) 0=Off 1=Single 2=Dual
65	Marker frequency 1, (Sweep Settings-Marker on-Enter figures)
66	Search for peak, (Sweep Settings) 0=Disable 1=Single 2=Dual
67	N4L Clamps, (Ch1/Ch2 Inputs) $0=No$ $1=Yes$
68	Marker frequency 2 (Sween Settings-Marker on-Enter figures)

75	Graph, (FRA Settings) 0=Dual 1=Gain 2=Phase		
76	Computation, (FRA Settings) $0 = CH2/CH1$ $1 = CH1/CH2$		
88	Timebase, (Oscilloscope Settings-Enter figures)		
89	Trigger level, (Oscilloscope Settings-Enter figures)		
90	Pretrigger, (Oscilloscope Settings) 0=None 1=25% 2=50% 3=75%		
91	Trigger polarity, (Oscilloscope Settings) 0=Rising edge 1=Falling edge		
92	Trigger mode, (Oscilloscope Settings) 0=Auto 1=Normal 2=Single shot		
94	Traces, (Oscilloscope Settings) 0=Single 1=Dual 2=CH2 Current		
95	Trigger channel, (Oscilloscope Settings) 0=CH1 1=CH2		
104	Measurement, (LCR Settings) 0=Impedance magnitude 1=Parallel circuit 2=series circuit		
110	Search for peak, (Sweep Settings, LCR Mode)		

	0=Off 1=Single 2=Dual		
112	Initial settings, (System settings) 0=Program 1 1=Factory default 2=As last used		
113	Peak hold, (Sweep Settings) 0=Off 1=On		
117	IP Address, (Remote settings-LAN-Entee address numbers)		
121	Language, (System Settings) 0=English 1=Italian		
161	AC Trim Enable, (Trim Settings) 0=Disabled 1=Ch1		
162	2=Ch2 AC Trim Level (Trim Settings-Enter numbers)		
163	AC Trim Tolerance (Trim Settings-Enter numbers)		
164	Transformer Unshielded Length, (DUT-Enter figures)		
165	Transformer Temperature, (DUT-Enter figures)		
166	Transformer Fluid Filled, (DUT Settings) 0=Yes 1=No		
169	Transformer OLTC, (DUT-Enter figures)		
170	DUT Mode, (DUT Settings) 0=None 1=Power Transformers		
171	Phase Graph scaling, (Sweep Settings) 0=Auto		

1=Manual

172	Phase Graph max, (Sweep settings-Enter figures)		
173	Phase Graph min, (Sweep settings-Enter figures)		
174	Zero Offset		
177	Memory, (Program	n) 0=Internal 1=USB Memory stick	
178	Data, (Program)	0=Program 1=Results	
179	Action, (Program)	0=Recall 1=Store 2=Delete	
180	Location, (Program - Enter figures as required)		
185	Set clock hours, (System – Enter figures as required)		
186	Set clock minutes, (System – Enter figures as required)		
187	Set clock Seconds, (System – Enter figures as required)		
188	Set date day, (System – Enter figures as required)		
189	Set date month, (System – Enter figures as required)		
190	Set date year, (System – Enter figures as required)		

Newtons4th Ltd. contact details

Please direct all queries or comments regarding the SFRA45 instruments or this manual to:

Newtons4th Ltd. 1 Bede Island Road Leicester LE2 7EA United Kingdom

Tel: (0116) 230 1066 international +44 116 230 1066 Fax: (0116) 230 1061 international +44 116 230 1061

E-mail address: sales@newtons4th.com office@newtons4th.com

Web site: www.newtons4th.com

At Newtons4th Ltd. we have a policy of continuous product improvement and are always keen to hear comments, whether favourable or unfavourable, from users of our products. Please telephone, fax, write or e-mail with your comments.